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Abstract. Dynamic systems which are described by homogeneous ordinary differential equations
with slowly variable coefficients are considered. The eigenvalues of these equations correspond to
stable states of the system. The exponential growth that has been discovered within the WKB
approximation corresponds to a new type of instability. It results in a physically reversible,
continuous energy transfer to the system due to adiabatic variation of two or more parameters. A
general theory is presented and simple mathematical and physical examples are given. A particular
case of the effect where the amplitude of the solutions does not change is the increase of the so-called
geometric (Berry–Hannay) phase.

1. Introduction

Soon after the independent (and nearly simultaneous) appearance of the papers by Berry and
Hannay [1–3] interest toward the so-called geometric or topological phases strongly increased
in physics. This interest has proven to be valid as the geometric phases helped to explain and
predict a series of various effects. The experimental and theoretical works connected with
the geometric phase belong to quite different fields of physics, such as the classical oscillator,
chemical reactions, solid state physics and ray optics, as well as quantum mechanics and
superfields (see the review [4] and references therein). At first, the geometric phases were
considered in a variety of physical systems with slowly varying parameters. Such systems
often possess adiabatic invariants relating changes in the solution amplitude and the system
energy with variation of the parameters. However, the existence of an adiabatic invariant does
not pose restrictions on the phase variation of the solution. Therefore, a geometric change
of phase may arise. It means that the change of the geometric phase component does not
depend on the rate of parameter variation but is determined solely by the trajectory of the
representative point in the parameter space. The geometric phases considered by Berry and
Hannay are anholonomic or nonintegrable. This means that the change of the geometrical
phase component is not equal to zero when the representative point moves along a closed
contour. In particular, if the representative point moves continuously along a closed contour,
the geometric phase may grow infinitely.

This paper is devoted to an analogous effect in the amplitude of the solution. The effect
may display itself in systems with slowly varying parameters which have no adiabatic invariant
(the existence of one would prohibit the unlimited growth of the system energy with finitely
varying parameters). Using the WKB approximation (which is equal to the adiabatic) solutions
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of an arbitrary linear ordinary differential equation with adiabatic variation of the coefficients
have been investigated. The geometric part of the solution phase has been isolated in the
general case. In turn, this part has a component which is anholonomic. It is shown that the
anholonomic geometric phase, generally speaking, is complex, even in equations with real
coefficients. This means that anholonomic geometric terms may not only appear in the phase
of the solution but in the amplitude as well. Hence, when the representative point of the
system moves along a closed contour in the parameter space, the solution will either grow
exponentially or decrease (which depends on the direction of motion along the contour). For
this reason we will call the effect geometric instability, by analogy with the geometric phase.

Let us note the specific properties of this instability that do not allow us to include it in
any of the well known classes. First, the eigenvalues of the equation may have no positive
real part at every fixed time moment. This means that the eigenvalues correspond to stable
states of the system. Second, the instability cannot be considered a parametric resonance.
Indeed, parametric resonances appear when coefficients of an equation change periodically
and at certain frequencies. Moreover, in a parametric resonance one of the solutions grows
exponentially regardless of the phase coefficient variation. In this sense the parametric
resonance instability is physically irreversible. Meanwhile, in the presence of a geometric
instability the amplitude growth is determined only by the representative point in the parameter
space. It does not depend upon the rate of coefficient variations. Thus, the geometric instability
should be observed with aperiodic variation of the equation coefficients. If the coefficients vary
periodically, the variation frequency may be arbitrarily low. Finally, the geometric instability
is physically reversible. If the equation solutions showed exponential growth with a certain
type of a representative point motion along a contour, then they should decrease if the point
moves in the opposite direction: the instability changes into damping and the system will
return to its initial state.

Along with a general analysis, specific mathematical and physical examples are
considered. It is shown that geometric instability may manifest itself even in the simplest
of differential equations. The theoretical derivations are corroborated by numerical analysis
of the equations which is in agreement with the theory. The WKB approach used in this
paper is an alternative, natural for linear adiabatic systems, to the averaging method or that of
reduction to normal form [5, 6] which are generally applied to analyse the geometric phase.
The equivalence of the WKB method to the formalism employed by other workers is shown
in the appendix by considering the known example of the generalized oscillator.

2. General theory

Let us consider a dynamic system which is described by a homogeneous linear ordinary
differential equation of ordern, with slowly varying coefficients,

y(n)(x) +
n∑
k=1

ak(εx)y
(n−k)(x) = 0. (1)

Here ε � 1 is the adiabatic variation parameter. We will assume that equation (1) has
no singular points in the domain of variation of the coefficients. Then its solutions may be
obtained within the first approximation inε, by the well known WKB method (see, for instance
[7, 8]).

Let the state of the initial system be determined by coordinates of the representative
point in the n-dimensional phase space and the set of adiabatically variable parameters
q = (q1(εx), . . . , qs(εx)). Then the coefficients of equation (1), generally speaking, will
contain small derivatives|q(j)α (εx)| ∼ εj |qα(εx)| (here and further below the differentiation is
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with respect tox). The WKB approximation suggests retaining only the zeroth and first-order
terms inε. Then equation (1) can be written in the form

y(n)(x) +
n∑
k=1

ak0(εx)y
(n−k)(x) +

n∑
k=1

ak1(εx)y
(n−k)(x) = 0. (2)

Where the coefficientsak0 depend only on the set of parametersq and are of order one, while
the coefficientsak1 are proportional to first derivatives of the parameters and have an order of
ε,

ak0(εx) = ãk0(q(εx))
ak1(εx) =

s∑
α=1

b̃kα(q(εx))q
′
α(εx).

(3)

By substitutingy(x) = exp(px) into (2) we arrive at the characteristic equation

l(εx, p) = l0(εx, p) + l1(εx, p) = 0

l0(εx, p) ≡ pn +
n∑
k=1

ak0(εx)p
n−k

l1(εx, p) ≡
n∑
k=1

ak1(εx)p
n−k.

(4)

Here the left-hand side of the general characteristic equation has been separated into two parts
which correspond to different orders ofε. The set of independent WKB solutions of equations
(1) and (2) can be written in the form of [7]:

yj (x) = exp

{∫ x

pj (εξ) dξ − 1

2

∫ x l′′pp(εξ, pj (εξ))
l′p(εξ, pj (εξ))

p′j (εξ) dξ

}
j = 1, . . . , n. (5)

Herepj (εx) are the roots of the characteristic equation (4). Let us separate small terms of
different order in (5). The second term in the exponent of (5) is proportional to derivatives
of the roots of the characteristic equation, and hence is of orderε. The first term, as is easy
to see from (4), includes terms of both order zero and order one inε. First, we will look for
approximate solutionspj (εx). Within zeroth order inε, the roots of (4) are determined from
the truncated equationl0(x, p) = 0. They can be written in the form (see (3) and (4))

pj0(εx) = p̃j0(q(εx)). (6)

By applying the perturbation method it is easy to obtain solutions of equation (4) up to first-
order terms inε,

pj (εx) = pj0(εx) + pj1(εx)

pj1(εx) ≡ −
∑n

k=1 ak1(εx)p
n−k
j0 (εx)

npn−1
j0 (εx) +

∑n
k=1(n− k)ak0(εx)pn−k−1

j0 (εx)
.

(7)

Using (3) and (6) it is possible to represent the solutions (7) as functions of the parameters
q(εx) and their small derivatives,

pj (εx) = p̃j (q(εx), q ′(εx)) = p̃j0(q(εx)) + p̃j1(q(εx), q
′(εx))

p̃j1(q, q
′) ≡ −

∑s
α=1

∑n
k=1 p̃

n−k
j0 (q)b̃kα(q)q

′
α

np̃n−1
j0 (q) +

∑n
k=1(n− k)ãk0(q)p̃n−k−1

j0 (q)
.

(8)

The truncated characteristic equationl0(x, p) = 0 can be represented in the form of (see (4)
and (6))

l0(x, p) ≡
n∏
l=1

(p − p̃l0(q(εx))) = 0. (9)
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Now, the WKB solutions of (5) can be written in a more convenient form. By substituting
the solutions (6) and (8) and equations (4) and (9) into (5) and linearizing the exponent of (5)
with respect toε, we obtain

yj (x) = exp

{∫ x

pj0(εξ) dξ +8j(εx)

}
j = 1, . . . , n (10)

with

8j(x) =
∫ q(x) s∑

α=1

Gjα(q) dqα

and

Gjα(q) ≡
∑n

k=1

(∑
l 6=j

p̃n−k0j (q)
∂ãk0(q)
∂qα

p̃0j (q)−p̃0l (q)
− p̃n−k0j (q)b̃kα(q)

)
np̃n−1

0j (q) +
∑n

k=1(n− k)ãk0(q)p̃n−k−1
0j (q)

. (11)

As can be seen from (10) and (11), the exponent of the WKB solution contains, along
with the ordinary dynamic phase

∫ x
pj0(εξ) dξ , a complex geometric phase8j . The value of

the dynamic phase depends explicitly onx, while the value of8j does not show an explicit
dependence onx, being determined by an integral ofGj(q) = (Gj1(q), . . . ,Gjs(q)) along the
representative point trajectory in thes-dimensional space of parameters. Thus, the geometric
phase does not depend on the adiabatic approximation on the rate of parameter variation but
solely on the representative point trajectory in theq-space. In the simpler case of a single
variable parameter(s = 1) the fieldGj(q) is an analytic function having a primitive (we
consider parameter variations far from singularities). Then the phase8j is holonomic, i.e.
it depends only on the current value of the parameter and does not depend on the contour of
integration. In this case the second term in the exponent of the WKB solution (10) can be used
to construct the adiabatic invariant of the system.

But, in the general case of two or more independently varying parameters(s > 2) the
primitive may be absent, or it is impossible to introduce a potential forGj(q), since the field
may also have a curl component. The potential component ofGj(q) possesses a primitive
and determines the holonomic part of the geometric phase8j . The curl component ofGj(q)

determines the anholonomic part of8j which depends essentially on the integration contour in
theq-space. If the system trajectory in theq-space is a closed contour, then parameter values
at the starting point and endpoint are the same but the anholonomic phase gained along the
path is not equal to zero and the system does not return to the initial state.

Similar effects were first considered by Berry and Hannay [1–3], however they and later
writers only investigated the imaginary gain of the anholonomic phase8j , and therefore the
solution amplitude did not change as a result of the representative point motion along a closed
contour.

It follows from the general equations (10) and (11) that the phase gained along the path is
complex, and hence the anholonomic component of8j may have a real part. This case is of
special interest representing the possibility of reversible change of the system energy (here and
below we assume that the system energy is a monotonous function of the solution amplitude).

Consider the simplest case where the representative point moves along a closed contour
µ in theq-space. Then the amplitude of thej th WKB solution increases after one revolution
by the factor exp{Re

∮
µ
Gjα(q) dqα}. Continuous motion alongµ results in an exponential

growth or exponential decay of the solution, depending on the sign of the real part of the phase
gained over one period. Physically, the process is completely reversible: if the representative
point moves in the opposite direction around the sameµ, then the sign of the phase gained in
the exponent will change and the system will evolve in the opposite direction.
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It should be especially emphasized that motion along a closed contour in theq-space does
not imply a periodic variation of the coefficients. They may depend onx in an arbitrary way
(though at a sufficiently slow rate). The values they assume ought to obey the contour equation.
In the case of a periodic variation ofq(εx) the phase gained over one period does not depend
on the frequency. Thus, the geometric instability effect cannot be considered as a parametric
resonance.

The growth rate of thej th solution,γj , with a periodically varyingq(εx) (periodT ) is

γj = 1

T
Re
∮
µ

Gjα(q) dqα. (12)

It is easily seen that the order of magnitude ofγj is ε ∼ 1/T . In the case of small parameter
variation amplitudes, the rateγj , is, according to the Stokes theorem, proportional to the
area of a surface stretched on the contourµ, that is to the squared amplitude of parameter
variation. Since the growth rateγj of the instability discovered is always small compared
with the eigenvalue magnitudespj of the initial equation (1), it seems natural to look for
manifestations of the effect in such equations which do not possess eigenvalues with a positive
real part (i.e. all the eigenvalues correspond to bounded solutions). The characteristic values
may be purely imaginary or have small (much smaller thanε) real parts. It is the solutions that
correspond to such eigenvalues where the geometric instability should be essential.

It should be noted that the contourµ should not necessarily be closed. An exponential
growth may exist for fairly complex open trajectories. The sign of the phase increment is
determined by the direction of circular motion with respect to the curl component of the field
Gj(q).

In conclusion, let us examine the natural question as to which systems may support the
geometric instability. Let us assume for a moment that the effect is present in the system if the
motion of a representative point around a closed contour in theq-space results in a finite gain
of the geometric phase,

8j0 =
∮
µ

Gjα(q) dqα 6= 0 (13)

although8j0 may be purely imaginary and have no effect on the solution amplitude.
Mathematically, the condition (13) means that the curl of thes-dimensional fieldGj(q) is
not equal to zero, i.e.

(curlGj(q))αβ = ∂Gjα(q)

∂qβ
− ∂Gjβ(q)

∂qα
6= 0. (14)

The effect under consideration will exist if the initial equation is not invariant with respect to
change in the sign of the independent variablex (this condition is necessary but not sufficient).
Really, if the sign ofx changes, the representative point of the system starts moving along the
contour in the opposite direction, and hence the phase gain (13) changes its sign. Therefore,
the system satisfying (13) is not invariant with respect to changes of sign of the independent
variable. With regard to the eigenvaluespj (εx) this condition means that the pointspj (εx) in
the complex plane have no fixed centre of inversional symmetry. Actually, if such a symmetry
centre existed, then the substitutiony(x) = y1(x) exp(pcx) (wherepc is a complex value
corresponding to the symmetry centre location) would allow displacement of the entire set
of eigenvalues in the complex plane in such a way as to make the origin of coordinates the
symmetry centre. Apparently, in that case the initial equation would be invariant with relative
changes of the sign ofx.
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3. Simple mathematical examples

In this section some examples of the simple differential equations are given, where the above
considered geometric instability may prove observable. For the sake of simplicity, we will only
consider the equations whose coefficients depend on the parameters but not their derivatives.
All the derivations for concrete equations which were given by the general scheme of section 2
are omitted here. Details of the WKB formalism can be found in the appendix, with calculations
of the geometric phase for the known example of a generalized oscillator.

3.1. Geometric instability in equations with real coefficients

As was shown in section 2, it is necessary for the instability effect that the eigenvalues should not
have a fixed point of inversion symmetry in the complex plane. The eigenvalues of an equation
with real coefficients always lie symmetrically with respect to the real axis. Therefore, it is
necessary that the eigenvalues should not possess a fixed symmetry parallel to the imaginary
axis. For the case of a real second-order equation this means that its eigenvalues should have a
variable real part, which corresponds to a variable growth or decay rate in the WKB solutions
(we take for granted that the real part of the eigenvalues does not change its sign). Obviously,
the magnitude of the effect under consideration (variation of the phase8j0) will be proportional
to the amplitude of variation of this growth/decay rate. When the amplitude reduces to zero
the eigenvalues acquire a fixed axis of the symmetry, such that the effect is certainly absent.
In addition, the phase gain is proportional to the small parameterε, which implies that the
growth rate of the geometric instability for a real second-order equation, which is associated
with 8j0, will always be much smaller than the ‘principal’ growth/decay rate connected with
the real part of the eigenvalue.

Strictly speaking, if the real part of an eigenvalue is proportional to the derivative of
a parameter and changes its sign with oscillations of the parameter, then the effect may be
possible in second-order equations. We will not give the corresponding examples here, nor
consider equations containing parameter derivatives.

Thus, it is possible to state that the lowest order of a real equation in which the geometric
instability may exist is equal to three (a first-order equation depends on a single parameter,
while8j0 6= 0 is possible if there are at least two parameters (see section 2).

Consider the equation

y ′′′ + χ(εx)y ′′ + ω2(εx)y ′ + χ(εx)ω2(εx)y = 0. (15)

The corresponding characteristic equation can be written as

l(εx, p) = (p − iω(εx))(p + iω(εx))(p + χ(εx)) = 0. (16)

It is not difficult to see that two roots of equation (16) correspond to oscillating solutions, while
the third root to a damping one. Thus, at first sight equation (15) does not have growing solutions
(we exclude the case of parametric resonances). Using the general formalism of section 2
and the final formula (11), we will derive expressions for the phases81,2 corresponding to
oscillating solutions of (15), namely:

81,2 = −
∫ ±3iω + χ

±2iω(±iω + χ)
d(±iω).

The real part of the anholonomic part of the phase is

Re81,2 = −
∫

ω

ω2 + χ2
dω 6= 0. (17)
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Figure 1. Amplitudes|y(x)| of the solution to equation (15) for different variable parameters
ω(εx) = 1 + e1 cos(εx), χ(εx) = 1 + e2 sin(εx) (bold curve). The thin curve represents
the exp(Re81,2(x)) dependence calculated after equation (17). As can be seen, the amplitude
variations arising from changes of the parameters are determined by the phase Re8. The
theoretical results are in full agreement with the computer simulation. The small-scale oscillations
correspond to a sum of two complex WKB solutions of equal amplitudes and progressive phases
±i
∫ x
ω(εξ) dξ . The period of large-scale oscillations coincides with that of parameter variations,

T = 2πε−1. (a) e1 = 0.5, e2 = 0, ε = 0.2. The point(ω, χ)moves along a straight line and does
not cover any area in the parameter space. Therefore, the phase8j0 gained over one period is equal
to zero. (b) e1 = 0.5, e2 = −0.5, ε = 0.2. The point(ω, χ) moves around a circle in a clockwise
direction. This produces an exponential growth of two independent WKB solutions. (c) e1 = 0.5,
e2 = 0.5, ε = 0.2. The point(ω, χ) moves counterclockwise around the same circle. This brings
forth an exponential decay of the two independent WKB solutions. (d) Firste1 = 0.5, e2 = −0.5,
ε = 0.2 the solution grows. At pointx = x0 the phaseχ(εx) is shifted byπ , which corresponds to
e1 = 0.5, e2 = 0.5, ε = 0.2. The solution attenuates to return to the initial condition atx = 2x0.
This example illustrates the reversibility of geometric instability.

Thus, the oscillating solutions which correspond to two purely imaginary roots of (16) begin to
simultaneously grow or decrease with such variation of the parameters when the point(ω, χ)

runs along a closed two-dimensional curve.
Figure 1 shows the results of solving equation (15) numerically withω(εx) = ω0 +

e1 cos(εx) andχ(εx) = χ0 +e2 sin(εx), which corresponds to the motion of the representative
point (ω, χ) around a circle. Indeed, we are able to observe the simultaneous growth or
damping of the two solutions at a rate corresponding to the calculation after equations (12)
and (17). If the sign ofe2 in front of the sine was changed, then the representative point(ω, χ)

would move along the contour in the opposite direction, and the evolution of the solutions will
also proceed in the opposite direction. This means that the growth and damping of the solution
may be controlled and reversed by changing the phase of the periodical dependence in one
coefficient (figure 1(d)).

During the numerical solution of equation (15), a special check showed that the instability
growth rate is strictly proportional toε � 1, in accord with (12). In other words, the phase
(17) gained after one turn of point(ω, χ) does not depend on the point velocity.
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Note that introduction of a weak attenuation in solutions of the third-order equations (15)
and (16) i.e.p1 = iω1− δ andp2 = −iω− δ with δ � ε does not change the general pattern.
This result has also been verified numerically.

3.2. Geometric instability in a second-order equation with complex coefficients

The eigenvalues of an equation with complex coefficients lie asymmetrically relative to the
real axis. Therefore, the geometric instability may appear in a complex equation of order as
low as the second.

Consider the equation

y ′′ − i(ω1(εx) + ω2(εx))y
′ − ω1(εx)ω2(εx)y = 0. (18)

The corresponding characteristic equation may be represented as

l(εx, p) = (p − iω1(εx))(p − iω2(εx)) = 0.

It can be seen that the roots of the characteristic equation correspond to oscillating solutions.
The phases of the two solutions are

81,2 = −
∫

dω1,2

ω1,2 − ω2,1
6= 0. (19)

These are purely real, and the values gained as a result of one turn of the point(ω1, ω2) have
opposite signs. This means that the amplitude of one solution will grow, while that of the
other will attenuate. Should the point(ω1, ω2) move in the opposite direction, the damping
and instability change place. In either case the amplitude of the general solution will grow
exponentially.

Figures 2(a)–(c) show the results of numerical solution of equation (18) withω1(εx) =
ω10 + e1 cos(εx) andω2(εx) = ω20 + e2 sin(εx). Figures 2(d)–(f ) demonstrate the spectra of
these solutions. It is seen that, depending on the direction of motion of point(ω1, ω2), the
growing solution is either that of frequencyω1, or ofω2.

4. Simple physical examples

The simplest physical systems which are described by linear differential equations may often
be represented as sets of interacting oscillators of a different kind. In this section we will
consider examples of such systems.

4.1. Coupled oscillators with attenuation

As is known, a system of interacting oscillators can be described in terms of a Hamiltonian
which is invariant to relative changes of sign of the independent variable (time). In order to
obtain the desired effect of geometric instability it is necessary that the system should not be
invariant with respect to time inversion (section 2). A noninvariance of the system will arise
if we introduce damping. At least one oscillator ought to be only weakly damping, such that
the geometric instability with a small growth rate(∼ε) could be observed. It is also necessary
that one of the oscillators should be strongly damping (rate of order 1). If the damping of all
oscillators were weak, then the geometric instability growth rate would be of orderχε � χ

(whereχ is the small damping rate), and the effect would not be observable (see section 3.1).
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Figure 2. (a)–(c) Amplitudes|y(x)|of the solution to equation (18) for different variable parameters
ω1(εx) = 1 + e1 cos(εx), ω2(εx) = 3 + e2 sin(εx) (bold curve). The thin curve corresponds to
the exp(max{Re81,2(x)}) dependence calculated after equation (19). The small-scale oscillations
correspond to a sum of two complex WKB solutions of different amplitudes with progressive phases
i
∫ x
ω1,2(εξ) dξ . The period of large-scale oscillation coincides with that of parameter variation,

T = 2πε−1. (d)–(f ): The spectrayk(k) = 1
2π

∫
y(x)e−ikx dx of solutions to equation (18) for

fixed coefficientsω1 = 1, ω2 = 3, after the coefficients of equation (18) have been altered at
somex-interval in accord with (a)–(c) respectively. (a), (d) e1 = 0.5, e2 = 0, ε = 0.2. The
point (ω1, ω2) moves along a straight line and does not cover any area in the parameter space.
Accordingly, the phase8j0 gained over one period is equal to zero. The amplitudes of the two
independent WKB solutions do not change. (b), (e) e1 = 0.5, e2 = −0.5, ε = 0.2. The point
(ω1, ω2) moves around a circle in a clockwise direction which causes an exponential growth of
the WKB solution subscripted 2 and exponential decay of the WKB solution 1. (c), (f ) e1 = 0.5,
e2 = 0.5, ε = 0.2. The point(ω1, ω2) moves counterclockwise around the same circle, causing
an exponential growth of the solution subscripted 1 and exponential decay of solution 2.

Let us consider two coupled oscillators. One is characterized by strong damping due to
friction (χ ∼ 1), while the other oscillates without friction but is subject to weak damping
through the transfer of energy to the first oscillator. The initial equation set is

y ′′1 + ω2
1(εx)y1 = ν1(εx)y2

y ′′2 + χ(εx)y ′2 + ω2
2(εx)y2 = −ν2(εx)y1.

(20)
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The corresponding characteristic equation can be written, within zero-order approximation in
ε, as

l0 = p4 + χp3 + (ω2
1 + ω2

2)p
2 + χω2

1p + (ω2
1ω

2
2 + ν1ν2) = 0.

It is easy to see that two roots of this equation always have a negative real part (damping rate
of the solution) of orderχ . The negative real part of the other two roots may be made as
small as is desired together with the parameterν1ν2, which is responsible for the oscillator
coupling. However, the geometric instability growth rate will be small in this case, even
compared with the small damping proportional toν1ν2. This can be demonstrated rigorously,
using equation (20) and the general formula (11), but we will not quote the lengthy derivations
here, confining ourselves to a qualitative explanation of the result.

Really, the termν1ν2 is responsible for oscillator coupling. Withν1ν2 = 0, the oscillators
are independent. For each independent oscillator described by a real second-order equation
the effect is absent (see section 3.1, as well as the appendix and [9], where the equivalence
of a generalized oscillator and a damping oscillator is proved). Therefore, the growth rate
of the geometric instability is proportional to the small parameterν1ν2 and to the other small
parameter,ε. Thus, the growth rate is∼ εν1ν2� ν1ν2, which is what needed to be proved.

This example can be extended to the case of an arbitrary number of damping oscillators.
Consequently, the effect is always small compared with damping and the solution cannot grow.

4.2. Moving coupled oscillators. The plasma–beam system

The asymmetry of the equation with regard to the sign change of the independent variable (time)
for coupled oscillators can be introduced by means of the relative motion of the oscillators. Let
one of the oscillators be at rest. The frequency of the other will be shifted owing to the Doppler
effect. Then the two eigenvalues,±iω, of the moving oscillator will receive the same imaginary
addendum. In section 4.1 we achieved an asymmetry in the set of eigenvalues by means of
displacing them along the real axis. Now the effect under consideration may arise due to
eigenvalue displacement along the imaginary axis. Since it is difficult to imagine a continuous
coupling of moving discrete oscillators, we shall consider distributed oscillating systems with
relative motion. An example is given by the well known plasma–beam interaction.

In the simplest one-dimensional case the plasma represents an undulating system with
the dispersion lawω = ±ω0(k), wherek is the wavenumber. The beam eigenwaves are
characterized by a similar dispersion law shifted due to the Doppler effect:ω = kv ± ωb,
wherev is the velocity of beam particles, andωb the plasma frequency (Langmuir frequency)
of the beam. Letωb � ω0(k). Then the frequencies of one of the plasma waves and the
two beam waves become close for suchk = k0 thatω0(k0) = k0v. The three waves start
interacting, the beam waves being at resonance with the plasma wave. As a result one of the
waves grows exponentially along the beam propagation direction (we consider a boundary
problem with fixed frequencies of the waves). This effect is well known as the plasma–beam
instability (PBI) (see, for instance [10]).

The differentiation operators reduce to multiplication by iω, owing to uniformity of the
system with respect to time. Then the initial wave equations in partial derivatives become
ordinary equations with oscillating solutions, where the independent variable is the longitudinal
coordinate. The frequency of the monochromatic waves is a fixed parameter of the problem.
The basic equations which describe the linear stage of three wave interaction under the PBI
conditions may be written in the form of [11],

z′ − iχ(εx)z = −iρ(εx)y
y ′′ = 1

2z.
(21)
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Herex is a dimensionless longitudinal coordinate; theχ(εx) coefficient describes deviations
of the wavenumber from the resonance valuek0 and may depend on the coordinate as a result
of nonuniform density of the plasma. Finally,ρ(εx) is a beam–plasma coupling factor. That
may change together with the transverse geometric structure of the system [12].

Equation set (21) reduces to the third-order equation

y ′′′ − iχ(εx)y ′′ +
i

2
ρ(εx)y = 0. (22)

Its characteristic equation is

l = p3− iχp2 +
i

2
ρ = 0. (23)

Equation (23) is characterized by a singularity ifχ = χc = − 3
2ρ

1
3 . That is the point where

two roots merge, which corresponds to a simple turning point for (22). Atχ > χc, one of the
roots of (23) has a positive real part, such that the corresponding solution grows exponentially
due to the PBI. Withχ < χc all the three roots are purely imaginary, and the corresponding
waves are stable. It is this domain of parameters which is of special interest for the effect under
consideration.

Figure 3 shows results of numerical solution of equation (22) withρ = ρ0 + e1 cos(εx)
andχ = χ0 + e2 sin(εx), χ < χc, and the corresponding spectra. It is seen that for the motion
of the point(ρ, χ) around a circle in a specified direction one of the waves grows, while the
other decays and the third remains nearly unchanged. If the direction of motion is altered, then
the growing wave decays and the damping one grows.

It should be noted that the example given in this section is of illustrative character and of
poor fit for implementation. We have considered a strictly monochromatic signal of a fixed
frequencyω which determines the necessary variation domain for the parameterχ < χc. In
actual fact, the spectrum always contains small ‘background’ components that may correspond
toχ > χc, i.e. to the PBI. Besides, the variations of parametersχ andρ ought to be realized over
a long interval (much longer thanε−1) of thex-axis. It might prove impossible to effectuate
such variations in reality.

Nevertheless, the example is important because it demonstrates, in principle, the possibility
of a geometric instability in physical systems. In addition, it will help to define classes of
systems in which the effect of geometric instability is possible or impossible. We shall discuss
it further.

5. Discussion

We have considered the effect of geometric instability which may arise in dynamic systems as
a result of independent variation of several parameters. The effect consists of an exponential
growth of solutions of linear differential equations with slowly variable coefficients. The
eigenvalues of the equation may correspond to the steady-state, i.e. restricted solutions. The
exponential growth (or attenuation) of solutions arise due to an anholonomic geometric
component in the exponent of the WKB solutions of the homogeneous linear ordinary
differential equations. Note that parameter variations are considered far from singularities of
the initial equation and in the absence of parametric resonances. This justifies the application
of the WKB approximation. Let us list the main properties of the effect discovered.

(a) Geometricity. The change of the solution amplitude accompanying adiabatic variation of
the parameters does not depend on the rate of their variation, being determined solely by
the trajectory of the representative point in the parameter space. Because of this property
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Figure 3. (a)–(c) The amplitudes|y(x)| of solutions to equation (22) for different variable
parametersρ = 1 + e1 cos(εx), χ = −2.5 + e2 sin(εx). The small-scale oscillations correspond
to a sum of three complex WKB solutions with different amplitudes and progressive phases∫ x
pj (εξ) dξ (pj are the imaginary roots of the characteristic equation (23)). The period of large-

scale oscillations coincides with that of parameter variations,T = 2πε−1. (d)–(f ): Spatial spectra
yk(k) = 1

2π

∫
y(x)e−ikx dx of solutions to equation (22) for fixed coefficientsχ = −2.5, ρ = 1,

upon alteration of coefficients at a certainx-interval in accordance with (a)–(c), respectively. The
wavenumberskj = −ipj correspond to different oscillation modes, specifically:k1,2 ≈ ±0.5—
two beam waves andk3 ≈ −2.5—the plasma wave. (a), (d) e1 = 0.5, e2 = 0, ε = 0.2. The point
(ρ, χ)moves along a straight line and does not cover any area in the parameter space. Accordingly,
the phase8j0 gained over one period is equal to zero and the amplitudes of the three independent
WKB solutions do not change. (b), (e) e1 = 0.5, e2 = −0.5, ε = 0.2. The point(ρ, χ) moves
clockwise around a circle. This results in an exponential growth of one beam wave and exponential
decay of the plasma wave. (c), (f ) e1 = 0.5, e2 = 0.5, ε = 0.2. The point(ρ, χ) moves
counterclockwise around the same circle, bringing forth an exponential growth of the plasma wave
and exponential decay of one beam wave.

the geometric instability is less sensitive to the time dependence of the parameters then,
say, the parametric resonance instability. In the latter case small deviations from the
resonance dependence are capable of breaking the instability.

(b) Anholonomicity. When a representative point goes around a closed contour in the
parameter space, the WKB gains a nonzero complex phase. This leads to a change of
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the solution amplitude, implying some work done over the system which does not return
to its initial state. Because of the geometricity, a continuous motion of the representative
point changes the solution amplitude by the same factor over each revolution. Hence, the
solution will grow or damp exponentially.

(c) Reciprocity of the instability. This property follows from the anholonomicity and
geometricity of the effect. Let the solution increase exponentially when the representative
point moves around a certain contour in parameter space. This growth may be turned into
attenuation by changing the parameters in such a way that the representative point should
go around the same contour in the opposite direction (see section 3.1).

(d) Smallness of the effect.It was shown in section 2, that the growth rate of the geometric
instability is of the same order asε (small adiabatic parameter). Moreover, if the amplitude
of parameter variations is small, then the geometric instability growth rate is proportional
to the square of the amplitude.

The above considered mathematical examples (section 3.1 and 3.2) show that the geometric
instability may manifest itself essentially, even in the simplest of differential equations. This is
possible assuming that the instability is pertinent to a broad class of equations. Nevertheless,
it was not a simple matter to find an example of a physical system in which the effect of
geometric instability would be observable. The simplest systems which may be represented
as a set of coupled oscillators do not exhibit the effect (see section 4.1), whereas the similar
effect of geometric Berry–Hannay phase is observed even in a single generalized oscillator, or
one with attenuation [3, 9]. The example of the plasma–beam system (section 4.2) confirms in
principle, the possibility of geometric instability in physical systems. So, what is the reason
for its absence in simple systems, such as coupled oscillators? And what is special about the
plasma–beam system which is equally representable as a set of coupled moving oscillators?

The following explanation seems reasonable. In Hamiltonian mechanical systems
describable in terms of a Hermitian Hamilton operator or a real Hamiltonian, it is always
possible to construct an adiabatic invariant of action [5, 13]. The presence of an adiabatic
invariant prevents the appearance of a geometric instability because it limits the solution
amplitude through limited variations of the parameters. As is known, a set of damping
oscillators is a Hamiltonian system (if [9]), and hence the absence of a geometric instability
in the system confirms the validity of our arguments. The plasma–beam system is equally a
Hamiltonian system (it is possible to construct an electrodynamic Hamiltonian for the particles
and waves). But the analogy with coupled moving oscillators is not complete. Any mechanical
system is described by a Hermitian Hamilton operator, while the Hamiltonian of the plasma–
beam system is non-Hermitian. Really, the eigenvalues (frequencies or wavenumbers) of beam
oscillations are all shifted by the same imaginary value due to the Doppler effect. Thus, it
is impossible to define a mechanical real Hamiltonian for the system and generally speaking,
it is impossible to construct an adiabatic invariant. This seems to explain the existence of a
geometric instability in the system.

It follows from these arguments that a geometric instability may be observed in the physical
systems which do not possess an adiabatic invariant, i.e. in non-Hamiltonian systems or in
nonmechanical Hamiltonian systems.

This paper shows, above all, the existence of a novel effect of geometric instability which
may arise in different dynamical systems. Also described are the main properties of the effect,
some of which only qualitatively. In particular, the problem of real physical systems in which
the geometric instability can be observed, remains. In addition it would be interesting to give
a more rigorous classification of dynamical systems from the geometric instability point of
view, i.e. to formulate the necessary and sufficient conditions for the existence of geometric
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instability. It would be important to extend the theory to nonlinear, multi-dimensional systems
and to non-adiabatic parameter variations, as was done for the Berry–Hannay geometric phases.
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Appendix. The Hannay geometric phase in the generalized oscillator

In order to illustrate application of the general WKB formalism, let us analyse the example of
a generalized oscillator in which the Hannay geometric phase arises. The Hamiltonian of such
an oscillator is of the following form:

H = 1
2(x(εt)Q

2 + 2y(εt)QP + z(εt)P 2)

whereQ and P are the generalized coordinate and momentum, respectively, andx, y, z

are adiabatically varying parameters withxz > y2. Let us write the equation of motion
corresponding to this Hamiltonian,

Q′′ − z
′

z
Q′ +

(
xz− y2 + y

z′

z
− y ′

)
Q = 0.

The derivatives are taken here with respect tot . By comparing this equation with equation (1)
to (3) it is easy to obtain the parameters and magnitudes used in the general formalism

n = 2 s = 3 q = (x, y, z)
ã10 = 0 ã20 = xz− y2

b̃11 = 0 b̃12 = 0 b̃13 = − 1
z

b̃21 = 0 b̃22 = −1 b̃23 = y

z
.

The characteristic equation with its approximate roots is (see (4) and (6)):

l = l0 + l1 = p2 + (xz− y2)− z
′

z
p +

(
y
z′

z
− y ′

)
= 0

p̃j0 = ±i
√
xz− y2 ≡ ±iω.

Now, by substituting these expressions into (11) we can derive the geometric phase8j

of the solution and single out its integrable (holonomic) and nonintegrable (anholonomic)
components, namely:

8j =
∫ [(

− z

4ω2

)
dx +

(
y

2ω2
∓ i

1

2ω

)
dy +

(
− x

4ω2
+

1

2z
± i

y

2ωz

)
dz

]
=
∫ −z dx + 2y dy − x dz

4(xz− y2)
+
∫

dz

2z
± i

∫
y

2ω

(
dz

z
− dy

y

)
= ln

(√
z

ω

)
± i

∫ t y

2ω

(
z′

z
− y

′

y

)
dτ.

This will yield, according to (10), two independent WKB solutions for the generalized
oscillator, i.e.

Qj =
√
z

ω
exp

{
± i

∫ t

ω dτ ± i
∫ t y

2ω

(
z′

z
− y

′

y

)
dτ

}
.
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The first term in the exponent is the usual dynamic phase, while the second is Hannay’s
geometric phase. It is purely imaginary and hence does not change the solution amplitude.
The amplitude is connected to parameter variations by the adiabatic invariant which can be
easily constructed using the pre-exponential factor in the WKB solutions,

|Q(t)|2ω(t)
z(t)
= Inv.

The expressions derived for the dynamic phase, the Hannay geometric phase and the adiabatic
invariant coincide completely with the results which were obtained earlier by other methods
[3, 9].
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